1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修4《2.3.2平面向量的正交分解及坐标表示》精品PPT课件优质课下载
把一个向量分解为 的向量,叫做把向量正交分解.
两个互相垂直
知识点一 平面向量的正交分解
思考
如果向量a与b的夹角是90°,则称向量a与b垂直,记作a⊥b.互相垂直的两个向量能否作为平面内所有向量的一组基底?
答案 互相垂直的两个向量能作为平面内所有向量的一组基底.
答案
思考1
知识点二 平面向量的坐标表示
如图,向量i,j是两个互相垂直的单位向量,向量a与i的夹角是30°,且|a|=4,以向量i,j为基底,如何表示向量a?
答案
梳理
(1)平面向量的坐标
①在平面直角坐标系中,分别取与x轴、y轴方向相同的两个 i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使得a=xi+yj.平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y).
②在平面直角坐标平面中,i=(1,0),j=(0,1),0=(0,0).
单位向量
思考2
答案
在平面直角坐标系内,给定点A的坐标为A(1,1),则A点位置确定了吗?给定向量a的坐标为a=(1,1),则向量a的位置确定了吗?
答案 对于A点,若给定坐标为A(1,1),则A点位置确定.对于向量a,给定a的坐标为a=(1,1),此时给出了a的方向和大小,但因向量的位置由起点和终点确定,且向量可以任意平移,因此a的位置还与其起点有关.
思考3
答案
已知点A(x1,y1),B(x2,y2),那么向量 =(x2-x1,y2-y1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去始点的坐标.
知识点三 平面向量的坐标运算
思考